1 Title: 2 Sub-communities of the vaginal microbiota in pregnant and non-pregnant women 3 4 Authors & affiliations: Laura Symul<sup>1,11</sup>, Pratheepa Jeganathan<sup>2,11</sup>, Elizabeth K. Costello<sup>3,11</sup>, Michael France<sup>4,5,11</sup>, Seth 5 M. Bloom<sup>6,7,8,11</sup>, Douglas S. Kwon<sup>6,7,8,11</sup>, Jacques Ravel<sup>4,5,11</sup>, David A. Relman<sup>3,9,10,11</sup>, Susan 6 7 Holmes\*,1,11 8 9 1. Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, CA 94305, USA 10 2. Department of Mathematics and Statistics, McMaster University, 1280 Main Street, West Hamilton, 11 Ontario L8S 4K1, Canada 12 3. Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 13 USA 14 4. Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, 15 Baltimore, MD 21201, USA 16 5. Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West 17 Baltimore Street, HSF-I Suite 380, Baltimore, MD 21201, USA 18 6. Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston MA 02114, USA 19 7. Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA 20 8. Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge MA 02139, USA 21 9. Department of Microbiology & Immunology, Stanford University School of Medicine, 299 Campus Drive, 22 Stanford, CA 94305, USA 23 10. Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo 24 Alto, CA 94304, Palo Alto, CA 94304, USA 25 11. The Vaginal Microbiome Research Consortium (VMRC) 26 27 \* Corresponding author: susan@stat.stanford.edu 28 Authors' contribution: 29 SH, DR, JR designed the study. 30 SH, LS, PJ, DR conceived and designed the analyses. 31 DR, JR, DK, SB, EC, MF collected and annotated the data. 32 LS, PJ performed the analysis. 33 LS, SH, EC, DR wrote the manuscript draft. 34 All authors contributed to the final version of the manuscript. 35 **Competing Interest Statement:** J.R. is the cofounder of LUCA Biologics, a biotechnology 36 company focusing on translating microbiome research into live biotherapeutics drugs for

- 37 women's health. All remaining authors have no disclosures to declare.
- 38 Keywords: Vaginal microbiota, multi-omics, menstrual cycle, pregnancy

#### 39 Abstract:

40 Diverse and non-Lactobacillus-dominated vaginal microbial communities are associated with 41 adverse health outcomes such as preterm birth and the acquisition of sexually transmitted 42 infections. Despite the importance of recognizing and understanding the key risk-associated 43 features of these communities, their heterogeneous structure and properties remain ill-defined. 44 Clustering approaches are commonly used to characterize vaginal communities, but they lack 45 sensitivity and robustness in resolving substructures and revealing transitions between potential 46 sub-communities. Here, we address this need with an approach based on mixed membership 47 topic models, using longitudinal data from cohorts of pregnant and non-pregnant study 48 participants. We identify several non-Lactobacillus-dominated sub-communities common to both 49 cohorts and independent of reproductive status. In non-pregnant individuals, we find that the 50 menstrual cycle modulates transitions between and within sub-communities. In addition, a 51 specific non-Lactobacillus-dominated sub-community, which was associated with preterm 52 delivery in pregnant participants, was also more common during menses, a time of elevated 53 vaginal inflammation in non-pregnant participants. Overall, our analyses based on mixed 54 membership models reveal substructures of vaginal ecosystems which may have important 55 clinical and biological associations.

#### 56 Introduction

57 Several critical aspects of women's health are linked to the structure of the vaginal microbiota 58 (1-3). Vaginal microbiotas dominated by beneficial *Lactobacillus* species are associated with positive health outcomes (3). A paucity of Lactobacillus and a diverse array of strict and 59 60 facultative anaerobes, however, are associated with negative health outcomes such as preterm 61 birth (4, 5) and susceptibility to sexually transmitted infections (6–9), including HIV (10–12). 62 Longitudinal studies of vaginal microbiota composition have revealed its dynamic nature: 63 microbiota composition frequently changes over time (4, 13, 14). In non-pregnant individuals, a 64 virtually complete replacement of the microbiota is sometimes observed, typically around the time 65 of menses (13, 15). While complete replacement is rare, more modest (*i.e.*, of a fraction of the 66 microbiota composition), or slower (*i.e.*, over a few days or weeks) changes in composition are 67 relatively common in both pregnant and non-pregnant individuals (4, 13, 14). The microbiota of 68 pregnant women may appear more stable than that of non-pregnant individuals; however, 69 differences in sampling frequencies (*e.g.*, weekly during pregnancy vs daily outside of pregnancy) 70 might not allow us to fully characterize the differences in microbiota dynamic. Non-Lactobacillus 71 dominated microbiotas are generally less stable than Lactobacillus dominated ones (4, 13, 14). 72 Some Lactobacillus species, such as L. crispatus, better resist invasion or replacement by non-73 Lactobacillus species and create greater vaginal ecosystem stability during and outside 74 pregnancy (14, 16, 17). Other Lactobacillus species, such as L. iners, are more frequently 75 associated with non-optimal communities (14, 16, 17). Non-optimal vaginal microbiotas (i.e., non-76 Lactobacillus-dominated microbiota) are typically highly heterogeneous within and between 77 individuals (4, 14, 16). It remains, however, poorly understood whether non-optimal microbiota 78 composition is random (*i.e.*, individual-specific) or if distinct sub-communities (*i.e.*, consortia of 79 bacteria interacting with each other) exist within these diverse microbiotas. If such sub-80 communities do exist, it remains to be seen whether they are differentially associated with 81 characteristics of the host or with specific negative health outcomes, such as preterm birth. 82

83 Efforts to address this question have so far relied on clustering approaches. Various clustering 84 methods are commonly applied to taxonomic abundance tables to define community structure. 85 This has led to the adoption of the concepts of community state types (CST) or community types 86 (CTs) (18, 19). More recently, in order to define reference sub-CSTs (i.e., dataset- or study-87 independent state types), large composite datasets have been clustered, and several non-88 Lactobacillus-dominated clusters (sub-CSTs) have been identified across populations of non-89 pregnant women (20). Clustering serves as a useful dimensionality reduction tool for describing 90 complex microbiota compositions. However, clustering-based categorization of samples may fail 91 to capture clinically-relevant structures. For example, the vaginal microbiota of two women could

92 belong to the same cluster because their microbiotas both show a bare majority of *L. iners* (e.g., 93 60%), but be accompanied by L. crispatus in one case, and by a diverse panel of non-94 Lactobacillus species in the other case. The two situations may appear similar (*i.e.*, each may be 95 assigned to CST III), but they may be driven by different mechanisms and have different health 96 implications. In addition, clustering based approaches fail to model *transition* or *intermediary* 97 states between clusters (Fig 1). Modeling *transitions* is especially important in the context of the 98 vaginal microbiota as its composition may change several times over a few months, weeks or 99 even a few days, as observed in non-pregnant, menstruating individuals (4, 14–16). However, 00 because samples are assigned only to a single cluster (Fig1a), transitions between clusters may 01 appear identical (*i.e.*, described by the same sequence of clusters) while the underlying 02 microbiota trajectories were drastically different in rate (progressive vs abrupt) or in the nature of 03 the intermediate compositions. Finally, while clustering approaches can identify sets of species 04 that frequently co-occur, they are not well suited to identify subsets of species that may have 05 similar functions but that are not frequently found together (Fig 1b). These discrepancies between 06 the clustering assumptions and our understanding of the composition and dynamics of the vaginal 07 microbiota highlight the need for better-suited dimension reduction statistical models.

80

09 Topic models, first developed to infer population structure (21) and later formally described as 10 Latent Dirichlet Allocation (LDA) in the context of natural language processing (22), have recently 11 been proposed for analyzing microbial communities and identifying sub-communities (23). In 12 contrast to clustering-based categorization, where each sample is assigned to a single category 13 based on the closest cluster, samples are modeled as mixtures of topics (sub-communities), and 14 each topic is characterized by a particular distribution of bacterial species or strains. For example, 15 if a sample were described as 70% topic 1 and 30% topic 2, this would mean that the species 16 subsumed in topic 1 accounted for 70% of the sample, while the species in topic 2 accounted for 17 the remaining 30%. Some species can be found in several topics (e.g., a species can co-exist 18 within two distinct sub-communities). Topics may be composed of a few species or strains 19 (sparse topics) or include a larger number. In addition to providing a more realistic model of 20 microbiota composition, topic models present the advantage of not requiring any normalization 21 of the taxa count tables (typically the number of 16S rRNA genes sequenced in each sample) as 22 they are hierarchical Bayesian models explicitly accounting for library sizes.

23

In this study, we sought to deepen our understanding of the fine structure of non-optimal vaginal microbiotas by applying topic models (mixed membership models) to longitudinal samples acquired from pregnant and non-pregnant women. We examined the similarities and differences in sub-community composition between cohorts and compared them to previously identified reference clusters. We then investigated the clinical relevance of the identified sub-communities and their association with host characteristics, pregnancy status, phase of the menstrual cycle (in non-pregnant individuals), and the risk of preterm birth (in pregnant individuals). The concentrations of vaginal metabolites (both host- and bacteria-produced) and cytokines (hostproduced) were also quantified longitudinally in non-pregnant individuals but at a lower temporal resolution (five samples from 40 non-pregnant participants) and were analyzed for correlations with the menstrual cycle.



37 Figure 1: Topic models are mixed membership models that reveal transitions between states. (a) Schematics contrasting 38 sample characterization in a lower dimensional space by clustering methods versus topic models. In both schematics, each dot 39 is a sample. Larger colored dots in the clustering schematic indicate centroids. (b) Schematic illustrating the phenomenon of 40 "functional equivalence" and how clustering methods versus topic models represent it. We consider two or more species 41 potentially "functionally equivalent" if they tend to occupy the same ecological niche (thrive in similar environments and with other 42 species) but are rarely found together because they may compete for the same resources. (c-d) Examples of time-series displays 43 of changes in microbiota composition summarized by clusters membership (sub-CST - top) or topic proportions (bottom) in a 44 pregnant (panel c) and non-pregnant (panel d) participant. Topics were labeled such that their name matched the (sub)CST with 45 the most similar composition (see Fig. 2c).

- 47 **Results**
- 48

## 49 **Topic analysis identifies nine sub-communities in the vaginal microbiota of pregnant and** 50 **non-pregnant women**.

51 We analyzed data from 2,179 vaginal samples collected weekly from 135 pregnant individuals 52 enrolled at two sites in the United States (Stanford University, Stanford, CA and University of 53 Alabama, Birmingham, AL) and 1,534 vaginal samples collected daily from 30 non-pregnant 54 individuals enrolled at the University of Alabama, Birmingham (Methods, Table S1 for 55 demographic data). Topic models were fit to the count data of 16S rRNA amplicon sequence 56 variants (ASVs) agglomerated by taxonomic assignment.

57

58 Topic analysis requires choosing K, the number of topics, to model the provided count data. K 59 can be estimated using cross-validation or, as recently proposed (24), by performing topic 60 alignment across models with different resolutions (*i.e.*, with different K, Fig 2a). In contrast to 61 cross-validation, this latter approach shows how topics at higher resolution relate to topics at 62 lower resolution and provides several diagnostic scores. These scores characterize each topic 63 across degrees of resolution and allow us to evaluate whether the data deviate from LDA 64 assumptions. Our topic alignment suggested that 9 topics provided the best compromise between 65 dimension reduction and accurate modeling of taxonomic counts (Methods, SI, Fig 2a-b). If a 66 coarser resolution were desired, the alignment refinement scores suggested that K = 5 topics 67 would be the most suited as topics at higher resolutions were sub-topics of these five topics (SI, 68 Fig 2b).

69

At K = 9, four of these nine topics were dominated by one of the four most common *Lactobacillus* spp. (*L. crispatus*, *L. gasseri*, *L. iners*, and *L. jensenii*, Fig 2a-b). The composition of the five remaining topics did not include any *Lactobacillus* spp. (Fig 2a-b). These five non-Lactobacillus topics could be grouped into two groups based on the topic alignment: one group contained three topics which included *Gardnerella*, *Atopobium*, and *Megaspaera* spp., while the other group contained *Finegoldia*, *Corynebacterium*, and *Streptococcus* (Fig 2a-b).

76

# Topics provide a more succinct, yet more accurate, description of microbiota composition than sub-CSTs.

To evaluate the generalizability of the identified sub-communities, we compared the topic composition with the composition of the 12 "reference" clusters (sub-CSTs, Valencia centroids) described previously and identified in a composite dataset of non-pregnant individuals' samples (20) (Fig 2c). To compare topic and cluster compositions, we computed the Bray-Curtis 83 dissimilarities between the two compositions after harmonizing taxonomic assignments (Fig 2c, 84 Methods, SI). Topics were labeled to match the (sub-)CST label of the cluster to which they were 85 most similar (Methods) (Fig. 1c-d, Fig. 2b). The comparison showed that two L. crispatus-86 dominated sub-CSTs (I-A and I-B) have high similarity with the single L. crispatus-dominated 87 topic (I). Similarly, two L. iners-dominated sub-CSTs (III-A and III-B) match a single L. iners-88 dominated topic (III). This is because CST I-A and I-B (or III-A and III-B) describe microbiotas 89 that are either fully dominated by *L. crispatus* (subCST I-A) or *L. iners* (subCST III-A) versus 90 those dominated by *L. crispatus* or *L. iners* but also hosting other species (sub-CST I-B or III-B). 91 In contrast, because topic models allow samples to be composed of several topics, a single topic 92 is sufficient to account for L. crispatus (topic I) or L. iners (topic III) counts. Samples in which L. 93 crispatus co-exists with L. iners will be represented by a mix of topics I and III, while a sample 94 where L. crispatus co-exists with a Gardnerella species by a mix of topics I and IV-A/B. CST II 95 and V have a one-to-one optimal match with topics II and V.

96

97 When comparing the non-Lactobacillus sub-CSTs and topics, we observed that (i) sub-CST IV-98 A and IV-B are represented by three topics (IV-A, IV-B.a, and IV-B.b), which can, in part, be 99 explained by differences in taxonomic assignment used for topics (e.g., Gardnerella species are 200 undifferentiated in sub-CSTs, while, here, some Gardnerella ASVs were matched to different 201 species), and (ii) a single topic (IV-C1) matches four sub-CSTs (IV-C1 – IV-C4). This is because 202 these four sub-CSTs only differ in the proportion of 4 seemingly mutually exclusive species 203 (Streptococcus, Enterococcus, Bifidobacterium, and Staphylococcus), with one of these four 204 species dominating each sub-CST; the prevalence of the remaining species is similar across the 205 four IV-C1-4 sub-CSTs. In contrast, because topic models allow for synonyms, topic IV-C1 206 embeds these species within a single topic, as illustrated in Fig 1b.

207

We next examined three potential benefits of using topic mixed-memberships instead of clustering categorization (sub-CSTs). Our first conjecture was that topics would provide a more accurate representation of sample compositions than sub-CSTs. The second was that this effect would be primarily driven by samples from unstable microbiotas. Our third conjecture held that topic membership would better predict whether an individual is at risk of losing Lactobacillus dominance at the next time-point.

<u>'14</u>

To test our first conjecture (*i.e.*, accuracy of representation), we compared the Bray-Curtis dissimilarity between the actual sample compositions and the sample compositions predicted by topic mixed memberships or by sub-CST membership. The predicted composition of a sample is either the composition of the centroid of the sample's sub-CST or the average topic composition 219 (displayed in figure 2b) weighted by the proportion of each topic in that sample (Methods). The 20 Bray-Curtis dissimilarity between actual sample composition and predicted sample composition 21 was smaller when sample compositions were predicted by topics (Fig 2d). This effect was 22 stronger in pregnant participants (mean difference = 0.12, paired t-test p-value < 0.001) than in 23 non-pregnant participants (mean difference = 0.02, p-value < 0.001). The smaller mean 24 difference in non-pregnant women compared to pregnant women can partially be explained by 25 samples belonging to sub-CSTs IV-C1-4. These samples were dominated by one of the four 26 seemingly mutually exclusive species mentioned above (Streptococcus, Enterococcus, 27 Bifidobacterium, and Staphylococcus), considered synonyms in topic models, and found in a 28 single topic. When samples from sub-CST IV-C1-4 were omitted, the mean difference in 29 dissimilarity in non-pregnant women increased from 0.02 to 0.07.

:30

:31 Our second conjecture was that the composition of samples from stable microbiotas (*i.e.*, the :32 microbiota composition remains largely unchanged over time) would be equally well described :33 by sub-CSTs or by topics because these microbiotas would have stabilized over more robust :34 sub-communities that can be well captured by clustering approaches. In contrast, we expected :35 that samples from unstable microbiotas would be better described by topic mixed memberships :36 because the transitions between well-defined sub-communities can be captured better by varying :37 memberships. Our results supported this expectation in pregnant participants, but not in non-:38 pregnant participants (Fig S1). To test this expectation, we used the Bray-Curtis dissimilarities :39 computed above and compared their differences (sub-CSTs vs topics) in samples from stable vs 240 unstable microbiotas. Samples were considered to harbor stable microbiotas if they belonged to :41 a group of at least 5 consecutive samples whose Bray-Curtis dissimilarity was less than 0.25 :42 (similar results were obtained for 0.15 and 0.35 thresholds – see Table S2) and were considered :43 to harbor unstable microbiotas or transition states otherwise. In pregnant participants, the mean 244 difference in dissimilarities was 0.08 for samples from stable microbiotas and 0.14 for samples :45 from unstable microbiotas (one-sided t-test p-value < 0.001). In non-pregnant participants, these 246 differences were approximately the same in samples from both stable (0.03) and unstable (0.02) :47 microbiotas.

248

We next evaluated our third conjecture which was that topic memberships better identify individuals at risk of losing *Lactobacillus* dominance, defined here as overall *Lactobacillus* proportions falling below 50%. Past studies have shown that individuals whose microbiota is categorized as CST III (*L. iners*-dominated) are more at risk of losing *Lactobacillus* dominance than those in other *Lactobacillus*-dominated CSTs (I, II, and V) (17, 25) but this risk has not been evaluated with a more refined definition of microbiota composition. To do so, we trained logistic 255 regression models to predict whether an individual would lose their Lactobacillus dominance. 256 Prediction performances were then evaluated on an independent test set and the procedure was repeated ten times using random splits of the data into training and test sets (Methods). Since 257 258 only 11% of Lactobacillus dominated microbiotas switch to non-Lactobacillus dominated ones 259 (*i.e.*, we are predicting rare events), the F1 score, which is the harmonic mean of the prediction's 260 precision and sensitivity, was used to compare prediction performances (Fig 2e). This 261 comparison shows that topic memberships better predict the risk of losing Lactobacillus 262 dominance than sub-CST memberships do (median F1 score of 0.4 vs 0.27, Wilcoxon test p-263 value < 0.002). Specifically, topic-based predictions are more precise (*i.e.*, have a lower false 264 positive rate) than sub-CST-based predictions (precision of 0.26 vs 0.16, *p*-value < 0.002, Fig. 265 S2).









269

Figure 2: Sub-communities identified by topic models. (a) Alignment of topics (rectangles) for models fitted with an increasing number of topics (x-axis). The height of the rectangles is scaled according to the total proportion of the corresponding topic in all samples: taller rectangles represent more prevalent topics. Topics are connected across models (x-axis) according to their alignment weight, which reflect their similarities (Methods). Topics of the k = 9 model are annotated with their most prevalent species, and the numbers in brackets in front of each species indicate the proportion of that species in the topic. The annotations included the three most prevalent species that made up at least 5% of the topic composition. (b) Topic composition for k = 5 (coarse representation) or k = 9 (optimal tradeoff between dimension reduction and descriptive accuracy) topics (side-by-side 277 panels). The proportion of each species (y-axis) within each topic (x-axis) is encoded by the size of the dots. These proportions 278 sum to 1 for each topic. For readability and conciseness of the figure, species were included if they accounted for at least 0.5% 279 of a topic composition. (c) Comparison of the topic (x-axis) and sub-CST (y-axis) compositions. Compositions were compared 280 using the Bray-Curtis dissimilarity. Topics and sub-CSTs with similar compositions are characterized by a low divergence and a 281 darker hue. (d) Bray-Curtis dissimilarity between actual sample composition and predicted sample composition (y-axis) by sub-282 CSTs or topics (x-axis) in non-pregnant (left panel) and pregnant (right panel) individuals. Each line is a sample, colored by its 283 sub-CST membership. Stars in each panel indicate statistical significance of a one-sided paired t-test (\*\*\*: < 0.001) (e) F1 scores 284 (y-axis) for the prediction of Lactobacillus dominance loss (i.e., total proportion of Lactobacillus falling below 50%) at the next 285 sample when the loss is predicted from sub-CST membership (light green) or topic memberships (dark turquoise). The F1 score 286 is the harmonic mean of the precision and the sensitivity of the predictions. Distributions were obtained from 10 independent 287 training-testing sets (Methods, SI). Thin lines connect F1 scores from the same training-testing set.

288

Given these results and the three advantages conferred by topic-based description of microbiota
 composition, we next explored the demographic associations and functional relevance of the
 identified sub-communities.

292

### **Topic composition varies with demographic characteristics and pregnancy status.**

294 The samples used in this study were collected from three cohorts: non-pregnant women recruited 295 at the University of Alabama Birmingham between 2009 and 2010, pregnant women recruited at 296 the same institution between 2013 and 2015, and pregnant women recruited at Stanford 297 University also between 2013 and 2015. Participants' race and recruitment site were significantly 298 associated with differential proportions of several topics. The microbiotas of Black participants 299 and participants recruited at UAB were more likely to contain topics III (L. iners-dominated), IV-00 A, and IV-B.a (both non-Lactobacillus-dominated) (fig3a-c). Topics III and IV-A were also more 01 prevalent in pregnant participants, while topics IV-B.b and IV-C1 were less prevalent than in non-02 pregnant participants (fig3a-c).

:03

## Topics IV-C0 and IV-C1 increase during menses; topic IV-C1 is also associated with preterm birth.

The proportions of both topics IV-C0 and IV-C1 increased during menses (p-values smaller than 0.001 and 0.01 resp., fig 3c). In contrast, the proportion of topic I (*L. crispatus*-dominated, p-value < 0.01) decreased during menses. Consistent with previous findings (4), topic I (*L. crispatus*dominated) was associated with term delivery, while topic IV-C1 had a strong but mildly significant (p = 0.051) association with preterm delivery.



#### ;12

;13 Figure 3: Sub-communities and demographic and reproductive characteristics. (a-b) Topic composition per racial group 14 (a) or cohort (b). Vertical bars show the longitudinal average topic (color) proportion for each participant (x-axis). Participants are :15 ordered by their most prevalent topic. (c) Dirichlet regression estimated coefficients (x-axis) quantifying the associations between ;16 race, study site, pregnancy status (y-axis) and topic proportions (horizontal panels). Colors indicate the strength of the statistical 17 significance of the associations (p < 0.001: dark purple; p < 0.01: red; p < 0.05: orange; p < 0.1: yellow; p > 0.1: gray). (d) Topic ;18 proportions throughout the menstrual cycle (cycle day 0 indicates the first day of menses - see Fig 4a). Each dot is a sample. ;19 Lines connect samples from the same participant and cycle. Thick black lines show the average topic proportions across all 20 participants. Stars on the right indicate the statistical significance of the associations between topic proportions and menstrual 21 cycle (\*\*\*: p < 0.001, \*\*: p < 0.01). (e) Logistic regression estimated coefficients (x-axis) quantifying the association between :22 average topic proportion and preterm birth in pregnant individuals. Colors are as in panel (c).

23

#### 24 The menstrual cycle shapes the vaginal microbial composition.

:25 Prompted by the observation that the proportions of several topics varied with the menstrual 26 cycle, we further investigated longitudinal associations between menstrual cycle and microbiota 27 composition. Among the 30 non-pregnant participants, 26 had reported vaginal bleeding patterns :28 that allowed for identification of at least one menstrual cycle within the ten study weeks 29 (Methods), and for 20 participants, we had data over two consecutive menstrual cycles. Cycles 30 were standardized starting from 18 days before menses to 7 days after the first day of menses, 31 given that the luteal phase (after ovulation) is known to vary less in duration than the follicular 32 phase (before ovulation) (26, 27) (Fig 4a, Methods). Ovulation was assumed to occur around 2 33 weeks before the first day of menses based on average luteal phase duration (26, 27).

The vaginal microbiota structure of 4/20 participants (20%), characterized by topic proportions, showed a statistically significant agreement between consecutive cycles (Fig 4b-d) as measured by the RV coefficient (adj. p-value < 0.05, Methods). However, while the topic proportions may remain relatively stable throughout cycles, the underlying taxa composition may vary (*e.g.*, for participant UAB077, fig 4d-e). Half (10/20) of the participants had a statistically significant agreement between their taxa proportions in two consecutive cycles (Fig 4b, right panel).

- 41
- 42

43



Figure 4: The menstrual cycle shapes the microbial composition.

45 (a) Schematic illustrating the features of standardized cycles. (b) Scatter plot, in which each dot is a participant, showing the RV 46 coefficient of agreement (y-axis) between the relative proportions of topics (left panel) or taxa (right panels) of a participant's 47 consecutive cycles and the magnitude of change in microbiota composition throughout the cycle measured by the maximum of 48 the pairwise Bray-Curtis dissimilarity between the average topic or taxa proportions for each cycleday (x-axis). Participants 49 selected for panels c-e are highlighted in blue. (c-d) Topic composition of two participants with data available for at least two full 50 menstrual cycles. The first menstrual cycle is displayed in orange and the second in black. These two participants were selected 51 to show the diversity of temporal profiles. The time series display shows topic proportion (y-axis) on each cycle day (x-axis). For 52 each study participant, topics were included if their median proportion across cycles was higher than 1% and their maximal 53 proportion was higher than 5%. (e) Same display as in panels c-d but where the y-axis shows the relative abundance of each 54 taxon for that participant. Taxa were included following the criteria used to select topics in panels c-d.

55

56 We further investigated whether the vaginal environment, characterized by pH values and vaginal 57 metabolite and cytokine concentrations, varied with the menstrual cycle. Consistent with past results (18), the vaginal pH of Lactobacillus-dominated samples (i.e., proportions of Lactobacillus 58 59 > 50%) was lower (4.4, 90% 4.0-5.3) than that of non-Lactobacillus-dominated samples (5.0, 90% 4.0-5.8). The pH remained stable throughout the cycle (Lactobacillus-dominated: 4.3, 90% 4.0-60 61 5.3; non-Lactobacillus dominated: 4.9, 90% 4.0-5.5), except during menses when it increased by about 0.5 units in Lactobacillus-dominated (4.7, 90% 4.0-5.8) and non-Lactobacillus-dominated 62 63 samples (5.4, 90% 4.4-7.0) (Fig 5a).

Half of the cytokines (10 out of 20, p-values < 0.01, adjusted for multiple testing) showed a significant association with the menstrual cycle. Most cytokines (e.g., IL6 or TNF $\alpha$ ) peaked during menses, while two of them (IFN $\gamma$  and IL13) showed elevated abundance about the time of ovulation (Fig 5b, Fig S3). 18% of metabolites (60 out of 336) were also significantly associated with the menstrual cycle (Fig 5c, Fig S4). Most (72%) had increased or decreased abundances in the late luteal phase or during menses (between cycle day -3 and 5, Fig S4).

571

;72



Figure 5: Vaginal pH, cytokines, and metabolites throughout the menstrual cycle.

(a) Distribution of vaginal pH throughout the menstrual cycle in *Lactobacillus*-dominated samples (blue) and non-*Lactobacillus*-

dominated samples (orange). Dots indicate the means, while the shaded vertical bars span from the 25<sup>th</sup> to the 75<sup>th</sup> percentiles.

(b-c) Concentration (y-axis) of four cytokines (panels in b) and six metabolites (panels in c) with significant concentration

variations throughout the menstrual cycle (x-axis). Each black dot is a sample.

#### 78 Discussion

In this study, we used topic models, a mixed membership method, to identify bacterial sub-;79 80 communities within vaginal microbiota samples from both pregnant and non-pregnant US 81 women. We identified four *Lactobacillus*-dominated sub-communities corresponding to the four 82 Lactobacillus-dominated community state types (CST), and five non-Lactobacillus sub-83 communities (*i.e.*, topics), refining the structure of samples traditionally assigned to community 84 state type (CST) IV (18). This CST is particularly relevant clinically as a paucity of *Lactobacillus* 85 species is associated with bacterial vaginosis (BV), increased risk of preterm birth, and 86 susceptibility to acquiring sexually transmissible infections (3, 5, 6, 10–12, 25, 28).

87

88 These five non-*Lactobacillus* sub-communities were found to belong to two groups. One group 89 contained three topics (IV-A, IV-B.a, IV-B.b) and was characterized by the co-occurrence of ASVs 90 taxonomically assigned to species from the Gardnerella, Megasphaera, Atopobium, 91 Fastidiosipila, and Sneathia genera and of Prevotella amnii. The other group contained two topics 92 (IV-C0 and IV-C1). It was characterized by the co-occurrence of species from the 93 Corvnebacterium. Finegoldia. Peptoniphilus. Bifidobacterium. Staphylococcus. and 94 Streptococcus genera, and of Prevotella bivia/denticola and timonensis. These two groups align 95 with sub-groups previously identified with a clustering approach that aimed to identify reference 96 community state types in non-pregnant women from a large collated dataset (20): sub-CST IV-A 97 and B belong to the first group of 3 topics, and sub-CSTs IV-C0-4 to the second group. This study 98 thus confirms that non-Lactobacillus-dominated microbiotas present sub-structures that may 99 have clinical relevance.

.00

.01 The main difference between the approach used here (topic analysis) and clustering approaches .02 traditionally used to identify sub-groups in the vaginal microbiota lies in the *mixed membership* .03 nature of topic models, thereby allowing samples to be associated with multiple topics in different .04 proportions. This property offers the advantage of revealing longitudinal transitions between sub-.05 communities and the rate at which they occur, which is impossible with clustering approaches. ·06 We showed here that, in pregnant participants, stable microbiotas were almost equally well .07 characterized by clusters and topics; in contrast, unstable microbiotas composition was better .08 represented by mixed topic memberships than by sub-CSTs. We also observed that topic .09 memberships could better predict the risk that a participant's microbiota would lose its .10 Lactobacillus dominance and switch to a sub-optimal microbiota composition.

.11

In this study, we compared topic- and clustering-based sample descriptions in cases in which
 sub-communities (mixed) memberships were used as explanatory variables; the actual

.14 microbiota composition or the risk of losing *Lactobacillus* dominance were our response .15 variables. We expect that colleagues might also find advantages in using sub-communities mixed .16 memberships (topic-based sample description) as a *multivariate response variable* to identify .17 host or intervention related factors associated with specific transitions or intermediate states. In .18 contrast to univariate alternative or clustering, this might better reflect the potential multiple .19 etiologies of vaginal dysbiosis.

·20

.21 Another difference between topic models and clustering approaches is that topic models allow .22 for "synonyms", which may reflect *potential functional equivalences* in a microbial community .23 context. Indeed, if two species are found interchangeably (but not simultaneously) with a specific ·24 combination of other species, these two species will be found in the same topic. In contrast, .25 clustering approaches tend to create two clusters, one containing each of these two species, -26 potentially artificially increasing the number of functionally relevant sub-communities. This .27 matches our observations as a single topic encapsulates four sub-CSTs (IV-C1-4) (20) .28 characterized by four mutually exclusive taxa that co-occur with the same set of other species. ·29 These four taxa belong to the genera Streptococcus, Enterococcus, Bifidobacterium, and .30 Staphylococcus and these sub-communities are found with higher prevalence in non-pregnant .31 individuals, often during menses.

.32

.33 Topic models used in this study are unsupervised methods, and, like clustering, topic models .34 identify dataset-specific features. This means that sub-communities identified in samples from a .35 different cohort may differ from those identified in this study. However, we expect these sub-.36 communities to be reproducibly observed in other (North American) populations since the sub-.37 communities revealed by our analysis were found in individuals from three distinct cohorts. .38 encompassing both pregnant and non-pregnant individuals. Further, the agreement between the .39 topic composition and the composition of sub-CSTs, which had been identified from non-pregnant .40 individuals' samples, supports the generalizability of our findings. Deeper sequencing methods .41 (e.g., metagenomics) may allow a more precise taxonomic characterization of microbiota .42 samples, which may, in turn, enable further refinement of these sub-communities.

.43

We found several associations between these subcommunities and the demographic characteristics or reproductive status of participants. Specifically, Black women were more likely to have a microbiota containing *L. iners* (topic III) and non-*Lactobacillus* subcommunities from the first group (topics IV-A, IV-B.a, and IV-B.b). Regarding differences associated with participants' reproductive state, non-*Lactobacillus* topics from the second group (topics IV-C0 and IV-C1) were more prevalent in non-pregnant individuals than in pregnant women. They were especially more frequent during menses, a time characterized by elevated vaginal inflammation, as 40% of the measured cytokines had higher concentrations during menses. In pregnant individuals, topic IV-C1 showed a mildly significant association with the risk of preterm birth. It remains to be investigated whether vaginal inflammation is also elevated in pregnant individuals with a higher abundance of this sub-community. Our available data did not allow us to answer this question.

.56

.57 Almost all non-pregnant participants with data available for two menstrual cycles showed a high .58 between-cycle correlation in their vaginal microbiota variation. Most topics or taxa, however, .59 reached their maximal relative abundance at different menstrual cycle phases in different ·60 individuals. These inter-individual differences may be an artifact of the compositional nature (*i.e.*, .61 relative abundances) of our data or could be due to (i) inter-individual differences in menstrual -62 timing (for example, one participant might have a 10-day luteal phase while another one might .63 have a 14-day luteal phase); (ii) inter-individual differences in hormone levels (or the rates of .64 change in these levels); or (iii) the set of species present in each individual and how each of these -65 species might respond differently to the menstrual cycle while competing for resources. Future ·66 clinical studies including hormonal measurements would allow a better understanding of the ·67 relationships between hormonal changes and microbiota composition. Similarly, additional data ·68 would be necessary to understand if abrupt hormonal changes, the presence of blood, or the use ·69 of menstrual protections such as pads or tampons drive the substantial changes in vaginal .70 microbiota composition observed during menses.

.71

.72 These abrupt changes in microbiota composition around menses were accompanied by changes .73 in vacinal cytokine and metabolite levels. As mentioned above, 8 out of 20 measured cytokines .74 had elevated levels during menses (and 2 around ovulation), and 70% of the 60 metabolites that .75 varied with the menstrual cycle peaked or dropped during menses. For example, kynurenine .76 peaked during menses while isoleucine dropped. Kynurenine is a tryptophan catabolite via a .77 pathway involving IDO1-mediated degradation. It is known to play a role in blood vessel dilatation .78 during inflammatory events (29). The elevated levels of kynurenine during menses found in our .79 study are thus consistent with these roles and with past studies showing varying levels of .80 kynurenine in serum and urine through the cycle (30, 31). In our vaginal samples, isoleucine, a .81 branched-chain amino acid with important metabolic functions (32), was found with the highest .82 levels in the luteal phase and lowest during menses. Interestingly, serum levels of isoleucine .83 show opposite trends (33). The menstrual changes in cytokine concentrations were consistent .84 with those identified in previous studies in non-pregnant individuals (34, 35). In addition to the 8 .85 cytokines that had elevated levels around menses, IFNy and IL13 had elevated levels around

ovulation. Further studies in which the clinical and reproductive state of participants is more
accurately measured would allow one to confirm these findings and to further investigate the
associations between local inflammation and microbiota composition.

.89

#### .90 Conclusions

.91 Topic analysis revealed bacterial sub-communities (topics) shared across pregnant and non-.92 pregnant women, confirming the existence of sub-structures in non-Lactobacillus-dominated microbiota and their possible clinical relevance. Compared to clustering approaches traditionally .93 .94 used to categorize microbial composition, topics provide an expanded characterization of the .95 heterogeneity of the previously described risk-associated community state type IV (CST IV), a .96 high-resolution view of transitions between communities, and they better predict the loss of .97 Lactobacillus dominance. We found that the menstrual cycle had a strong impact on the vaginal .98 microbiota and on vaginal levels of 60 metabolites and half (10/20) of the measured cytokines. .99 Specifically, one sub-community with increased prevalence during menses, a time of elevated 00 vaginal inflammation, was also mildly associated with the risk of preterm birth. In vitro studies will ;01 provide further functional insights into the identified sub-communities, their ecological network. *i*02 and their effects on the vaginal epithelium.

- Material and Methods
- 05

#### 606 Cohorts and sample collection

607 Daily samples from non-pregnant participants. The samples were obtained from 30 participants recruited 60 at the University of Alabama, Birmingham (UAB) as part of the UMB-HMP study, which enrolled 60 participants regardless of their BV diagnosis between 2009 and 2010 (15). Participants with symptomatic ;10 BV were treated using standard-of-care practices (15). These 30 participants were selected to represent ;11 women with stable Lactobacillus-dominated microbiota, stable non-Lactobacillus-dominated microbiota, ;12 and unstable microbiota (i.e., with samples dominated by Lactobacillus and others dominated by non-;13 Lactobacillus). Each participant self-collected daily vaginal swabs for 10 weeks, resulting in a maximum i14 of 10 x 7 = 70 samples per individual. For further detail about recruitment criteria and sample collection, ;15 see (15).

;16 Weekly samples from pregnant women. We used the samples from both cohorts presented previously (4). ;17 39 pregnant individuals were recruited at Stanford University (SU), and 96 pregnant individuals were ;18 recruited at the University of Alabama, Birmingham (UAB) between 2013 and 2015. Pregnant participants ;19 from both cohorts were enrolled from the fourth month of their pregnancy (earliest enrollment at week 8, 520 latest at week 22), and vaginal swabs were collected weekly (approximately) until delivery. There was an ;21 average of 16 samples per participant and 2179 samples in total. The distributions of age, BMI, and race 622 were significantly different between the two cohorts (Table S1). Participants recruited at UAB were part of ;23 a pool of individuals for which intramuscular progesterone injections (17-OHPC) were indicated or 624 recommended. UAB participants received that treatment throughout pregnancy. The treatment is intended 25 to reduce the risk of preterm birth in pregnant women with a singleton pregnancy and who have a history 626 of singleton spontaneous preterm birth. 9/39 (23 %, SU) and 41/96 (43 %, UAB) participants delivered 527 preterm, defined as a delivery before 37 weeks of gestation.

<u>Metabolite and cytokine samples.</u> Metabolites and cytokine concentrations were quantified in a subset of the non-pregnant samples. Specifically, 5 samples per non-pregnant participant were selected such that they were separated by approximately 2 weeks. In addition, 5 samples each were from 10 additional nonpregnant participants of the UMB-HMP study but recruited at different sites (Emory University and the University of Maryland Baltimore). In total, metabolites and cytokines were quantified in 200 samples from 40 non-pregnant individuals.

534

#### 35 Ethics

All participants provided written informed consent. Ethical approval was obtained from the Institutional Review Boards of Stanford University (IRB protocol no. 21956), the University of Alabama (protocol no. X121031002), Birmingham, Emory University, and the University of Maryland Baltimore. All research was conducted in compliance with relevant guidelines and regulations.

41 Vaginal microbiota sequencing

Daily samples from the 30 non-pregnant participants recruited at UAB (1534 samples). The V3-V4 regions
 of the 16S rRNA gene were amplified and then sequenced with the Illumina HiSeq/MiSeq platforms.

- Weekly samples from pregnant participants of both cohorts (SU and UAB) (2179 samples): Raw sequence data from samples from pregnant participants were generated and processed as described in (4). In brief, genomic DNA was extracted from vaginal samples using a PowerSoil DNA isolation kit (MO BIO Laboratories). Barcoded primers 515F/806R (36) were used to amplify the V4 variable region of the 16S rRNA gene from each sample. Pooled amplicons were sequenced on the Illumina HiSeq platforms at the Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign.
- 51 Demultiplexed raw sequence data from Illumina HiSeq/MiSeq were resolved to amplicon sequence 52 described DADA2 Workflow variants (ASVs) as in the for Big Data 53 (https://benjjneb.github.io/dada2/bigdata.html) (37).
- 54

55 Taxonomic assignment. Automated taxonomic calls were made using DADA2's implementation of the 56 RDP naive Bayesian classifier (38) and a Silva reference database (version 132) (39). The assignment of 57 sequences of the most abundant ASVs were refined and standardized by using BLAST and NCBI RefSeq 58 type strains. This is the case for Lactobacillus. Candidatus Lachnocurva vaginae (previously referred to 59 as BVAB1), Gardnerella, and Megasphaera lornae species-level assignments, following recently 60 published work on these species (40, 41). Gardnerella ASVs were tagged as G1, G2, or G3 sensu (4) 61 based on exact matching of the ASV sequences. Tables with the taxonomic assignments are available 62 (see data availability section).

63

<u>Taxonomic agglomeration of ASV counts</u>. ASV counts were aggregated based on their taxonomic
 assignment such that the counts of ASVs with the same taxonomic assignment were summed.

66

#### 67 Metabolite concentration quantification

Untargeted metabolomics was performed on 200 non-pregnant participant samples by ultra-highperformance liquid chromatography/tandem mass spectrometry (Metabolon, Inc.). Metabolite identification was performed at Metabolon based on an internally validated compound library, and results were expressed in relative concentrations, following the same protocol as in (42). All samples were shipped and analyzed in a single batch.

73

Data transformation. We transformed the raw metabolite relative concentrations using a variance stabilizing method (43). Raw data included the concentrations of 853 metabolites. However, the abundance of 517 metabolites was missing in more than 50% of the samples. We removed these metabolites from the analysis. Despite this, measurements for most of the remaining 336 metabolites were still missing in at least one sample. Metabolites might be missing because their abundance was lower

- than the detection limits or because the overall quality of a sample was lower. A sample with more than60% missing metabolites was further excluded for the rest of the analysis.
- ;81

#### 82 Cytokine concentration quantification

683 Vaginal cytokines were quantified in the 200 non-pregnant participant samples using a Luminex-based ;84 assay with a custom kit of 20 analytes (IFNy, IL-1a, IL-1b, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-85 17, IL-21, IL-23, IP-10, ITAC, MIG, MIP-1a, MIP-1b, MIP-3a, and TNFα) following the same protocol as in 686 (12). The assay was run on a Luminex FLEXMAP 3D instrument. For measurements that were below the 87 limit of quantification for a given cytokine, values were imputed at half the lower limit of quantification 88 (LLOQ / 2). For measurements that were above the limit of quantification for a given cytokine, values were 89 imputed as equal to the upper limit of quantification (ULOQ). Values reported here represent medians of ;90 two technical replicates. The medians were calculated after imputation in one or both replicates (if ;91 necessary), as described above. Missing cytokine values represent technical failures of the assay for that 92 analyte.

93

Data transformation. Raw cytokine abundances were log-transformed. Raw data included the abundance
 of 20 cytokines. Most of the cytokines could be quantified (11/4000 data points were missing).

;96

#### 97 Data integration into a multi-assay experiment (MAE) object

All analyses were performed in the R software environment (44). Specific packages used for the analyses are referred to in the next sections. The raw datasets were loaded and minimally processed before being formatted into SummarizeExperiment objects of the SummarizedExperiment bioconductor package (45), then combined into a single S4 object using the MultiAssayExperiment bioconductor package (46).

602

#### i03 Identifying bacterial sub-communities using topic analysis

Microbial communities were estimated based on LDA (latent Dirichlet allocation) (22, 23). LDA models were fitted to the data for K (the number of topics) = 1 to 25 using the R package "topicmodels" (47). Models were fitted on the taxonomically agglomerated ASV counts directly, without any prior normalization; the library size being one of the parameters of this Bayesian framework.

Topics were aligned across K using the topic alignment method described in (24). To identify robust topics
 across K, we used the alignment summary scores for topic coherence as defined in the same reference.

;10

#### i11 Comparison of topic composition with subCST composition.

Both sub-CSTs centroids (20) and topics are described as compositional data: for each sub-CST or topic, the proportion of each species is provided such that the proportions sum to one per sub-CST/topic. However, the taxonomic assignment used by France et al. (20) differs from the assignment used here. For example, sub-CSTs taxonomy does not differentiate between *Gardnerella* species or uses "BVAB1" when we use *Ca.* Lachnocurva vaginae. Consequently, to compare topics with sub-CSTs, we proceeded in two steps. First, we harmonized the taxonomic assignments between the two methods (*e.g.*, proportions

- i18 of the different *Gardnerella* species were aggregated). A dictionary of the matched taxonomic assignment
- is available in the supplementary material. We then computed the Bray-Curtis dissimilarity between the composition of each topic and sub-CST centroid.
- ;21

#### Assignment to Valencia reference sub-CST

- Per France et al. (20), samples were assigned to the sub-CST that maximizes the Yue and Clayton similarity between the sample composition and the sub-CST centroids.
- 25

#### Microbiota composition prediction from sub-CST and topic membership

- 627 To compare how well sample composition was represented by sub-CST categories (fixed composition) or ;28 topics (fewer topics than sub-CSTs, but mixed memberships), we compared the Bray-Curtis dissimilarity ;29 between the actual sample compositions and the sample compositions predicted by topic mixed ;30 memberships or by sub-CST membership. The predicted composition of a sample is either the ;31 composition of the centroid of the sample's sub-CST or the average of topics composition (displayed in ;32 figure 2b) weighted by the proportion of each topic in that sample (*i.e.*,  $p_{i,i} = \sum_{k=1}^{K} \gamma_{i,k} \beta_{k,i}$  where  $p_{i,i}$  is ;33 the proportion of taxa j in sample i, k is the topic index going from 1 to K, the total number of topics,  $\gamma_{ik}$  is ;34 the proportion of topic k in sample i, and  $\beta_{k,j}$  is the proportion of taxa j in topic k).
- 35

#### 36 Microbiota local stability

Samples were classified as belonging to a stable microbiota if they were part of a series of 5 consecutive
samples with a Bray-Curtis dissimilarity smaller than a given threshold. Otherwise, the microbiota was
considered unstable.

640

#### i41 Predicting the risk of losing Lactobacillus dominance

642 To predict the risk of losing *Lactobacillus* dominance at the next time-point in participants' longitudinal ;43 time series, a logistic regression model was fitted to the data. The explanatory variables were either the ;44 sub-CST category of the sample or the topic proportion at the current time point. The response variable 645 was a binary variable indicating if the next sample belonged to a Lactobacillus-dominated sub-CST or not. 646 Lactobacillus dominance was defined as a total proportion of Lactobacillus larger than 50%. The models 647 were fitted on a training set (a random sample comprising 80% of the total dataset) and prediction ;48 performances were evaluated on the remaining 20% of the dataset. The procedure was repeated ;49 independently 10 times. Because the loss of *Lactobacillus* dominance is rare (10% of cases), we weighted ;50 the sample to give more weight (10 folds) to the minority class when training the models, and we used the ;51 F1 score, the harmonic mean between precision and sensitivity, to evaluate predictive performances. To ;52 test for differences in the sub-CST- vs topic-based prediction performances, a non-parametric Wilcoxon ;53 Rank sum test was used.

54

#### Associations between topic composition and demographic variables

A Dirichlet regression was used to test if race, study site, or pregnancy were associated with differential topic proportions. Because most participants' race was Black or White, the race was transformed into a three-category variable: Black, Other, and White, with "Other" serving as the reference. Pregnancy was a binary variable (pregnant *vs.* non-pregnant), and so was the study site: Stanford University (SU) *vs.* University of Alabama Birmingham (UAB). The model used is  $p = \beta + \alpha_R R + \alpha_P P + \alpha_S S + \varepsilon$  where *p* is the vector of topic proportions lying on the K-dimension simplex. Coefficients were obtained using the DirichletReg package in R (48).

63

#### i64 Identification of phases of the menstrual cycle

65 Menstrual cycles were identified from bleeding flows reported daily by participants on a scale from 0 (none) 66 to 3 (heavy). A hidden semi-Markov model was specified to account for empirically observed distributions 67 of cycle length and bleeding patterns across the menstrual cycle, including spotting between menses (49). 68 Data of participants who reported too few days with bleeding (i.e., less than 3/70 study days) or too many 69 (i.e., more than 30/70 study days) were excluded from the menstrual cycle analyses. Once cycles were ;70 identified (see Fig S5), cycle days were numbered forward and backward from the first day of the period. ;71 To align the two major menstrual events (i.e., ovulation and menses) across participants and given that ;72 the luteal phase has been well documented to vary less than the follicular phase (27), cycles were ;73 standardized starting from day -18 (i.e., 18 days before the start of the next cycle) and ending on day +7 ;74 (i.e., 7 days after the first day of the menses). This definition ensures that the standardized cycles would ;75 include the days leading to ovulation, estimated to happen around days -12 to -14 (27), and allows for the ;76 best possible alignment of the two major menstrual events (ovulation and menses) in the absence of ;77 hormonal and/or ovulation markers.

78

#### Testing for differential abundance throughout the menstrual cycle

To identify metabolites, cytokines, or topics with differential abundance (metabolites or cytokines) or differential probabilities of being present at specific phases of the menstrual cycle, a linear model (for abundances) or logistic regression (proportions) was fitted to circular splines parameterized with 4 degrees of freedom (R package "pbs"). Analysis of deviance was used to report p-values of the F-statistics and corrected for multiple testing using the Benjamini-Hochberg method.

85

#### Associations between topic proportions and preterm birth.

To test if topic proportions were associated with preterm birth, a logistic regression model was fitted on the data. Explanatory variables were the per-participant topic proportion averages, and the response variable was a binary variable indicating whether participants delivered preterm or not.

;90

### **Correlation in vaginal microbiota composition between two consecutive cycles**

To evaluate how the menstrual cycle affects the vaginal microbiota composition, we compute the RV coefficient (50) and associated permutation test p-value (51) between the topic or taxa proportions of the first cycle and of the second cycle. To quantify the magnitude of change in microbiota composition

- throughout the cycle (x-axes of fig 4b), we first compute the average topic or taxa proportion across cycles
  for each cycleday. Then, the pairwise Bray-Curtis dissimilarities are computed so that the compositions
  of each cycleday are compared against each other. The maximum value is used to quantify the magnitude
  of change throughout the menstrual cycle for each participant.
- ;99

#### '00 Availability of data and materials

'01 The sequence data for samples from non-pregnant study participants are available in the NCBI Sequence '02 Read Archive (SRA) under BioProject accession numbers <u>PRJNA208535</u> (samples beginning with UAB) '03 and <u>PRJNA575586</u> (samples beginning with AYAC and EM). Sequence data from samples from pregnant '04 study participants are available on the SRA (accession no. <u>PRJNA393472</u>). The raw data and R code '05 enabling the reproduction of the analyses are available at <u>https://purl.stanford.edu/gp215vr4425</u>. The '06 code is also provided in the SI.

'07

#### '08 Acknowledgments

The authors thank Anna Robaczewska for generating the amplicon libraries, and Nomfuneko Mafunda, Brooke Spencer, and Leah Froehle for running the cytokine quantification assays. They also thank Dr. K. Sankaran and Dr. J. Fukuyama for advice about the visualization of topic analyses, and all other members of the VMRC consortium for fruitful discussions and interactions.

'13

'14 Funding: This work was supported by the Bill and Melinda Gates Foundation grant '15 OPP1189205-2019 (J.R., and D.A.R), and grant INV-048982 (D.A.R.). D.A.R. is supported by '16 the Thomas M. and Joan C. Merigan Endowment at Stanford University and by the Good '17 Ventures Microbiome Research Fund. S.M.B. was supported in part by a grant from the Harvard '18 University Center for AIDS Research (CFAR), an NIH funded program (P30 AI060354), which is '19 supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, '20 NICHD, NIDCR, NHLBI, NIDA, NIMH, NIA, NIDDK, NINR, NIMHD, FIC, and OAR. The content '21 is solely the responsibility of the authors and does not necessarily represent the official views of '22 the National Institutes of Health.

#### 23 References

- R. M. Brotman, Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective. *J. Clin. Invest.* **121**, 4610–4617 (2011).
- 2. J. A. Gilbert, *et al.*, Current understanding of the human microbiome. *Nat. Med.* 24, 392–400 (2018).
- S. J. Kroon, J. Ravel, W. M. Huston, Cervicovaginal microbiota, women's health, and reproductive outcomes. *Fertil. Steril.* **110**, 327–336 (2018).
- 4. B. J. Callahan, *et al.*, Replication and refinement of a vaginal microbial signature of preterm
  birth in two racially distinct cohorts of US women. *Proc. Natl. Acad. Sci.* **114**, 9966–9971
  (2017).
- M. A. Elovitz, *et al.*, Cervicovaginal microbiota and local immune response modulate the risk
   of spontaneous preterm delivery. *Nat. Commun.* **10**, 1305 (2019).
- R. B. Ness, *et al.*, Bacterial Vaginosis (BV) and the Risk of Incident Gonococcal or
  Chlamydial Genital Infection in a Predominantly Black Population. *Sex. Transm. Dis.* 32, 413–417 (2005).
- 7. J. E. Allsworth, J. F. Peipert, Severity of bacterial vaginosis and the risk of sexually
   transmitted infection. *Am. J. Obstet. Gynecol.* **205**, 113.e1-113.e6 (2011).
- 8. C. van der Veer, S. M. Bruisten, J. J. van der Helm, H. J. C. de Vries, R. van Houdt, The Cervicovaginal Microbiota in Women Notified for *Chlamydia trachomatis* Infection: A Case-Control Study at the Sexually Transmitted Infection Outpatient Clinic in Amsterdam, The Netherlands. *Clin. Infect. Dis.* 64, 24–31 (2017).
- 44 9. J. Tamarelle, *et al.*, Vaginal microbiota composition and association with prevalent
   45 *Chlamydia trachomatis* infection: a cross-sectional study of young women attending a STI
   46 clinic in France. *Sex. Transm. Infect.* **94**, 616–618 (2018).
- 10. C. R. Cohen, *et al.*, Bacterial vaginosis and HIV seroprevalence among female commercial sex workers in Chiang Mai, Thailand: *AIDS* 9, 1093–1098 (1995).
- 11. C. R. Cohen, *et al.*, Bacterial Vaginosis Associated with Increased Risk of Female-to-Male
   HIV-1 Transmission: A Prospective Cohort Analysis among African Couples. *PLoS Med.* 9, e1001251 (2012).
- 12. C. Gosmann, *et al.*, Lactobacillus-Deficient Cervicovaginal Bacterial Communities Are
   Associated with Increased HIV Acquisition in Young South African Women. *Immunity* 46, 29–37 (2017).
- 13. P. Gajer, *et al.*, Temporal Dynamics of the Human Vaginal Microbiota. 14.
- 14. D. B. DiGiulio, *et al.*, Temporal and spatial variation of the human microbiota during pregnancy. *Proc. Natl. Acad. Sci.* **112**, 11060–11065 (2015).
- 15. J. Ravel, *et al.*, Daily temporal dynamics of vaginal microbiota before, during and after
   episodes of bacterial vaginosis. *Microbiome* 1, 29 (2013).
- '60 16. P. Gajer, et al., Temporal Dynamics of the Human Vaginal Microbiota. 14 (2012).
- 17. A. Munoz, *et al.*, Modeling the temporal dynamics of cervicovaginal microbiota identifies
   targets that may promote reproductive health. *Microbiome* 9, 163 (2021).
- 18. J. Ravel, *et al.*, Vaginal microbiome of reproductive-age women. *Proc. Natl. Acad. Sci.* 108, 4680–4687 (2011).
- M. N. Anahtar, *et al.*, Cervicovaginal Bacteria Are a Major Modulator of Host Inflammatory
   Responses in the Female Genital Tract. *Immunity* 42, 965–976 (2015).

- M. T. France, *et al.*, VALENCIA: a nearest centroid classification method for vaginal
   microbial communities based on composition. *Microbiome* 8, 166 (2020).
- 21. J. K. Pritchard, M. Stephens, P. Donnelly, Inference of Population Structure Using Multilocus
   Genotype Data. *Genetics* 155, 945–959 (2000).
- 71 22. D. M. Blei, A. Y. Ng, M. I. Jordan, Latent Dirichlet Allocation. J. Mach. Learn. Res., 30 (2013).
- 72 23. K. Sankaran, S. P. Holmes, Latent variable modeling for the microbiome. *Biostatistics* 20, 599–614 (2019).
- 74 24. J. Fukuyama, K. Sankaran, L. Symul, Multiscale Analysis of Count Data through Topic
   75 Alignment. *ArXiv210905541 Stat* (2021) (September 16, 2021).
- 76 25. D. B. DiGiulio, *et al.*, Temporal and spatial variation of the human microbiota during
   77 pregnancy. *Proc. Natl. Acad. Sci.* **112**, 11060–11065 (2015).
- Z6. L. Symul, K. Wac, P. Hillard, M. Salathé, Assessment of menstrual health status and
   evolution through mobile apps for fertility awareness. *Npj Digit. Med.* 2, 64 (2019).
- K. M. Schmalenberger, *et al.*, How to study the menstrual cycle: Practical tools and
   recommendations. *Psychoneuroendocrinology* **123**, 104895 (2021).
- 82 28. B. J. Callahan, *et al.*, Replication and refinement of a vaginal microbial signature of preterm
  birth in two racially distinct cohorts of US women. *Proc. Natl. Acad. Sci.* 114, 9966–9971
  (2017).
- Y. Wang, *et al.*, Kynurenine is an endothelium-derived relaxing factor produced during
   inflammation. *Nat. Med.* 16, 279–285 (2010).
- N. Hrboticky, L. A. Leiter, G. H. Anderson, Menstrual cycle effects on the metabolism of
   tryptophan loads. *Am. J. Clin. Nutr.* **50**, 46–52 (1989).
- 31. S. Brien, C. Martin, A. Bonner, Tryptophan Metabolism During the Menstrual Cycle. *Biol. Rhythm Res.* 28, 391–403 (1997).
- 32. C. J. Lynch, S. H. Adams, Branched-chain amino acids in metabolic signalling and insulin resistance. *Nat. Rev. Endocrinol.* **10**, 723–736 (2014).
- 33. C. F. Draper, *et al.*, Menstrual cycle rhythmicity: metabolic patterns in healthy women. *Sci. Rep.* 8, 14568 (2018).
- 34. V. Jespers, *et al.*, A longitudinal analysis of the vaginal microbiota and vaginal immune
   mediators in women from sub-Saharan Africa. *Sci. Rep.* 7, 11974 (2017).
- F. Bradley, *et al.*, The vaginal microbiome amplifies sex hormone-associated cyclic changes
  in cervicovaginal inflammation and epithelial barrier disruption. *Am. J. Reprod. Immunol.* 80, e12863 (2018).
- W. Walters, *et al.*, Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. *mSystems* 1 (2016).
- 37. B. J. Callahan, *et al.*, DADA2: High-resolution sample inference from Illumina amplicon data.
   *Nat. Methods* 13, 581–583 (2016).
- 38. Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, Naïve Bayesian Classifier for Rapid
   Assignment of rRNA Sequences into the New Bacterial Taxonomy. *Appl. Environ. Microbiol.* 73, 5261–5267 (2007).
- 39. C. Quast, *et al.*, The SILVA ribosomal RNA gene database project: improved data
   processing and web-based tools. *Nucleic Acids Res.* 41, D590–D596 (2012).

- 40. J. B. Holm, *et al.*, Comparative Metagenome-Assembled Genome Analysis of "Candidatus Lachnocurva vaginae", Formerly Known as Bacterial Vaginosis-Associated Bacterium–1
  (BVAB1). *Front. Cell. Infect. Microbiol.* **10**, 117 (2020).
- 41. S. Srinivasan, *et al.*, Megasphaera lornae sp. nov., Megasphaera hutchinsoni sp. nov., and
  Megasphaera vaginalis sp. nov.: novel bacteria isolated from the female genital tract. *Int. J. Syst. Evol. Microbiol.* **71** (2019).
- 42. S. Srinivasan, et al., Metabolic Signatures of Bacterial Vaginosis. *mBio* 6 (2015).
- 43. W. Huber, A. von Heydebreck, H. Sultmann, A. Poustka, M. Vingron, Variance stabilization
  applied to microarray data calibration and to the quantification of differential expression. *Bioinformatics* 18, S96–S104 (2002).
- 44. R Core Team, R: A Language and Environment for Statistical Computing.
- 45. M. Morgan, V. Obenchain, J. Hester, H. Pagès, SummarizedExperiment: SummarizedExperiment container (2020).
- 46. M. Ramos, *et al.*, Software for the Integration of Multiomics Experiments in Bioconductor. *Cancer Res.* **77**, e39–e42 (2017).
- 47. B. Grün, K. Hornik, topicmodels : An *R* Package for Fitting Topic Models. *J. Stat. Softw.* 40 (2011).
- 48. M. J. Maier, DirichletReg: Dirichlet Regression for Compositional Data in R. 27.
- 49. L. Symul, S. Holmes, Labeling self-tracked menstrual health records with hidden semiMarkov models. *IEEE J. Biomed. Health Inform.* (2021)
  https:/doi.org/10.1109/JBHI.2021.3110716 (September 16, 2021).
- 50. P. Robert, Y. Escoufier, A Unifying Tool for Linear Multivariate Statistical Methods: The RV Coefficient. *Appl. Stat.* **25**, 257 (1976).
- 51. Moonseong Heo, K. Ruben Gabriel, A permutation test of association between
   configurations by means of the rv coefficient. *Commun. Stat. Simul. Comput.* 27, 843–856
   (1998).
- 36